Oxidative Stress Levels of Fine Particulate Matter (PM2.5) and Urinary Glutathione of Microbus Drivers

Purnama Sidebang, Agustin Kusumayati, Budi Haryanto

Abstract


Urinary glutathione levels are known to be an early indicator of oxidative stress in travelers. This study analyzed the association between particulate matter (PM2.5) exposure on the road and urine glutathione levels in Jakarta’s microbus drivers. This cross-sectional study involved 96 microbuses (one of Jakarta’s public transportations) drivers of nine routes in Kampung Melayu Bus Station, Jakarta, Indonesia. An anthropometric assessment and a structured questionnaire were employed. Along with the participants driving on the road, real-time personal equipment measuring PM2.5 exposure concentrations was used. Total glutathione levels were measured using a colorimetric method. A correlation test and linear regression analysis were used to examine the effect of PM2.5 exposure on total glutathione levels. The average PM2.5 exposure concentration was 90.9±1.8 μg/m3, with a maximum concentration of 114.7 μg/m3. The average urinary glutathione level was 1.3±0.5 μM. The regression analysis showed that PM2.5 was associated with urinary glutathione levels after controlling for body mass index and smoking status. To conclude, the drivers experience exposure to an extremely high level of PM2.5 that could influence the glutathione levels.

Keywords


driver; microbus; particulate matter 2.5; public transportation; urinary glutathione

Full Text:

PDF

References


  1. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes. 2012; 61 (12): 3037–45.

  2. Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G, et al. Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J Exp Med. 2016; 239 (2): 117–25.

  3. Commodore AA, Zhang JJ, Chang Y, Hartinger SM, Lanata CF, Mäusezahl D, et al. Concentrations of urinary 8-hydroxy-2′-deoxyguanosine and 8-isoprostane in women exposed to woodsmoke in a cookstove intervention study in San Marcos, Peru. Environ Int. 2013; 60: 112–22.

  4. Tan C, Lu S, Wang Y, Zhu Y, Shi T, Lin M, et al. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen. Sci Total Environ. 2017; 593–594: 330–6.

  5. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM. Heavy metals and human health: mechanistic insight into toxicity and counter defence system of antioxidants. Int J Mol Sci. 2015; 16 (12): 29592–630.

  6. Weichenthal S, Crouse DL, Pinault L, Godri-Pollitt K, Lavigne E, Evans G, et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health andEnvironment Cohort (CanCHEC). Environ Res. 2016; 146: 92–9.

  7. Gromadzińska J, Wąsowicz W. Health risk in road transport workers.Part I. Occupational exposure to chemicals, biomarkers of effect. Int JOccup Med Environ Health. 2019; 32 (3): 267–80.

  8. World Health Organization. WHO Global ambient air quality database (update 2018). Geneva: World Health Organization; 2018.

  9. World Health Organization. WHO global air quality guidelines: particulate matter (pm2.5 and pm10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021.

  10. Jakarta Open Data. Data indeks standar pencemar udara tahun 2017. Jakarta: Dinas Lingkungan Hidup Provinsi DKI Jakarta; 2017.

  11. Jakarta Open Data. Indeks Standar Pencemar Udara (ISPU) Tahun2018. Jakarta: Dinas Lingkungan Hidup Provinsi DKI Jakarta; 2018.

  12. Haryanto B. Climate change and urban air pollution health impacts in Indonesia. In: Akhtar R, Palagiano C, editors. Climate Change and Air Pollution. Cham: Springer International Publishing; 2018. p. 215–39.Available from:

  13. Pratiwi DA, Haryanto B. Effect of particulate matter 2.5 exposure to urinary malondialdehyde levels of public transport drivers in Jakarta.Rev Environ Heal. 2020; 35 (3): 295-300.

  14. Fendi, Uyainah A, Subekti I, Abdullah M. Penurunan fungsi parupengemudi mikrolet di Jakarta Timur dan karakteristik yang menyertainya. Indonesian Journal of CHEST Critical and Emergency Medicine. 2015; 2 (2): 61-6.

  15. Sisinta T. Kadar malondialdehyde (MDA) sebagai biomarker oxidative stress akibat pajanan PM2,5 pada siswa Sekolah Menengah Pertama Negeri 16 Bandung, Provinsi Jawa Barat [Thesis]. Depok: Universitas Indonesia; 2017.

  16. Fauzia S. Total Glutathione (GSH) pada masyarakat terpajan merkuridi kawasan pertambangan emas skala kecil (PESK) Desa Lebak Situ, Kabupaten Lebak, Banten [Thesis]. Depok: Universitas Indonesia;2016.

  17. Presiden Republik Indonesia. Peraturan Pemerintah (PP) Republik Indonesia Nomor 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. Jakarta: Sekretariat Kabinet Republik Indonesia; 2021.

  18. Both AF, Westerdahl D, Fruin S, Haryanto B, Marshall JD. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: Effect of commute mode. Sci Total Environ. 2013; 443: 965–72.

  19. Mbelambela EP, Hirota R, Eitoku M, Muchanga SMJ, Kiyosawa H, Yasumitsu-Lovell K, et al. Occupation exposed to road-traffic emissions and respiratory health among Congolese transit workers, particularly bus conductors, in Kinshasa: a cross-sectional study. Environ Heal Prev Med. 2017; 22:11.

  20. Yang X, Jiang L, Zhao W, Xiong Q, Zhao W, Yan X. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the U.S. Int J Environ Res Public Health. 2018; 15 (7): 1382.

  21. Kepolisian Republik Indonesia. Jumlah kendaraan bermotor menurutprovinsi dan jenis kendaraan (unit), 2019. Jakarta: Badan Pusat Statistik; 2019.

  22. González-Fraguela ME, Hung MLD, Vera H, Maragoto C, Noris E, Blanco L, et al. Oxidative stress markers in children with autism spectrum disorders. British J Med Med Res. 2013; 3 (2): 307–17.

  23. Yuniastuti A. Dasar Molekuler glutation dan peranya sebagai antioksidan. In: Iswari RS, editor. Semarang: FMIPA Press Universitas Negeri Semarang; 2016. p. 1–64.

  24. Brucker N, Moro AM, Charão MF, Durgante J, Freitas F, Baierle M, etal. Biomarkers of occupational exposure to air pollution, inflammation and oxidative damage in taxi drivers. Sci Total Environ. 2013; 463-464: 884–93.

  25. Holguin F. Oxidative stress in airway diseases. Ann Am Thorac Soc.2013; 10 Suppl: S150–7.

  26. Yildirim Z, Ucgun NI, Yildirim F. The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration.Clinics. 2011; 66 (5): 743–6.

  27. Chełchowska M, Gajewska J, Ambroszkiewicz J, Mazur J, Ołtarzewski M, Maciejewski TM. Influence of oxidative stress generated by smoking during pregnancy on glutathione status in mother-newborn Pairs. Antioxidants. 2021; 10 (12): 1866.

  28. Kamceva G, Arsova-Sarafinovska Z, Ruskovska T, Zdravkovska M, Kamceva-Panova L, Stikova E. Cigarette smoking and oxidative stress in patients with coronary artery disease. Open Access Maced J MedSci. 2016; 4 (4): 636–40.

  29. Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D.Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Med Cellular Longevity; 2019.

  30. Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, Capó X, Mateos D, Ugarriza L, et al. Peripheral blood mononuclear cells oxidative stress and plasma inflammatory biomarkers in adults with normal weight, overweight and obesity. Antioxidants. 2021; 10 (5): 813.

  31. Sahi N, Jain S, Ranawat N. A comparative study between two communities & regional variation in level of MDA with respect to waist hip ratio and BMI in response to an exclusive fibre Diet. J Medical Sci Clin Res. 2017; 5 (10): 29170–6.

  32. Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res. 2012; 37 (8): 1601–14.

  33. Kim KN, Lee H, Kim JH, Jung K, Lim YH, Hong YC. Physical activity-and alcohol-dependent association between air pollution exposure and elevated liver enzyme levels: an elderly panel study. J Prev Med Public Health. 2015; 48 (3): 151–69.

  34. Alisik M, Neselioglu S, Erel O. A colorimetric method to measure oxidized, reduced and total glutathione levels in erythrocytes. J Lab Med.2019; 43 (5): 269–77.

  35. Ledda C, Cannizzaro E, Cinà D, Filetti V, Vitale E, Paravizzini G, etal. Oxidative stress and DNA damage in agricultural workers after exposure to pesticides. J Occup Med Toxicol. 2021; 16: 1.

  36. Il’yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta. 2012; 413 (19–20): 1446–53.

  37. Khajehnasiri F, Mortazavi SB, Allameh A, Akhondzadeh S, HashemiH. Total antioxidant capacity and malondialdehyde in depressive rotational shift workers. J Environ Public Health. 2013; 2013: 150693.

  38. Buchtova Z, Lackova Z, Kudr J, Zitka Z, Skoda J, Zitka O. Capillary blood GSH level monitoring, using an electrochemical method adapted for micro volumes. Molecules. 2018; 23 (10): 2504.

  39. Shamshad S, Priyadarsini IA, Shameela S, Chakrapani IS, Ahmed MO. Oxidative stress in traffic police of Kurnool Town. European JPharmaceutic Med Res. 2015; 2 (7): 353–7.

  40. Sidebang P. Pajanan particulate matter (PM2,5) terhadap kadar totalglutathione (GSH) pada sopir angkutan Kota Terminal Kampung Melayu Tahun 2019 [Thesis]. Depok: Universitas Indonesia; 2016.




DOI: http://dx.doi.org/10.21109/kesmas.v18i1.6289

Refbacks

  • There are currently no refbacks.